TABLE OF INFORMATION DEVELOPED FOR 2012 (see note on cover page)

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_D = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$

Universal gas constant, $R = 8.31 \text{ J/(mol \cdot K)}$

Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$

Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$

1 electron volt, $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$

Universal gravitational

constant,

 $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$

Acceleration due to gravity

at Earth's surface, $g = 9.8 \text{ m/s}^2$

1 unified atomic mass unit,

 $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV/}c^2$

Planck's constant,

 $h = 6.63 \times 10^{-34} \text{ J s} = 4.14 \times 10^{-15} \text{ eV-s}$

 $hc = 1.99 \times 10^{-25} \text{ J m} = 1.24 \times 10^3 \text{ eV/nm}$ $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$

Vacuum permittivity,

Coulomb's law constant, $k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

Vacuum permeability,

 $\mu_0 = 4\pi \times 10^{-7} \text{ (T-m)/A}$

Magnetic constant, $k' = \mu_0/4\pi = 1 \times 10^{-7} \text{ (T-m)/A}$

1 atmosphere pressure,

1 atm = 1.0×10^5 N/m² = 1.0×10^5 Pa

UNIT SYMBOLS	meter,	m	mole,	mol	watt,	W	farad,	F
	kilogram,	kg	hertz,	Hz	coulomb,	C	tesla,	T
	second,	S	newton,	N	volt,	V	degree Celsius,	°C
	ampere,	A	pascal,	Pa	ohm,	Ω	electron-volt,	eV
	kelvin,	K	joule,	J	henry,	Н		

PREFIXES						
Factor	Prefix	Symbol				
10 ⁹	giga	G				
10^{6}	mega	M				
10^{3}	kilo	k				
10^{-2}	centi	c				
10 ⁻³	milli	m				
10 ⁻⁶	micro	μ				
10^{-9}	nano	n				
10^{-12}	pico	p				

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES								
θ	0°	30°	37	45°	53°	60°	90°	
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1	
$\cos\theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0	
tan	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8	

The following conventions are used in this exam.

- I. Unless otherwise stated, the frame of reference of any problem is assumed to be inertial.
- II. The direction of any electric current is the direction of flow of positive charge (conventional current).
- III. For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge.
- *IV. For mechanics and thermodynamics equations, *W* represents the work done <u>on</u> a system.

^{*}Not on the Table of Information for Physics C, since Thermodynamics is not a

ADVANCED PLACEMENT PHYSICS B EQUATIONS DEVELOPED FOR 2012

NEWTONIAN MECHANICS

$$v = v_0 + at$$

a = acceleration

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$
 $f = \text{frequency}$
 $h = \text{height}$

F = force

h = height

$$v^2 = v_0^2 + 2a(x - x_0)$$
 $X = \text{inergit}$
 $X = \text{impulse}$
 $X = \text{kinetic energy}$

$$\sum \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$$
 $k = \text{spring constant}$

$$F_{fric} \le \mu N$$

 ℓ = length m = mass

$$_{z}$$
 $_{z}$ v^{2}

N = normal force

$$a_c = \frac{v^2}{r}$$

P = power

$$\tau = rF \sin \theta$$

p = momentum

r = radius or distance

 $\mathbf{p} = m\mathbf{v}$

T = periodt = time

 $\mathbf{J} = \mathbf{F} \Delta t = \Delta \mathbf{p}$

U = potential energy

v = velocity or speed

$$K = \frac{1}{2}mv^2$$

W = work done on

a system x = position

 $\Delta U_g = mgh$

 $\mu = \text{coefficient of friction}$

 $W = F\Delta r \cos \theta$

 θ = angle τ = torque

$$P_{avg} = \frac{W}{\Delta t}$$

$$P = F \upsilon \cos \theta$$

$$\mathbf{F}_{s} = -k\mathbf{x}$$

$$U_s = \frac{1}{2}kx^2$$

$$T_s = 2\pi \sqrt{\frac{m}{k}}$$

$$T_p = 2\pi \sqrt{\frac{\ell}{g}}$$

$$T = \frac{1}{f}$$

$$F_G = -\frac{Gm_1m_2}{r^2}$$

$$U_G = -\frac{Gm_1m_2}{r}$$

ELECTRICITY AND MAGNETISM

$$F = \frac{kq_1q_2}{r^2}$$

A = area

$$\mathbf{E} = \frac{\mathbf{F}}{a}$$

C = capacitanced = distance

B = magnetic field

E = electric field

$$U_E = qV = \frac{kq_1q_2}{r}$$

 $\varepsilon = \text{emf}$ F = force

$$E_{avg} = -\frac{V}{d}$$

I = current ℓ = length

$$V = k \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} + \dots \right)$$

P = powerQ = charge

$$C = \frac{Q}{V}$$

q = point chargeR = resistance

$$C = \frac{\epsilon_0 A}{d}$$

= distance = time

$$U_c = \frac{1}{2}QV = \frac{1}{2}CV^2$$

U =potential (stored) energy

v = velocity or speed

potential difference

$$I_{avg} = \frac{Q}{\Delta t}$$

V = electric potential or

$$avg = \frac{1}{\Delta t}$$

 ρ = resistivity θ = angle

$$=\frac{\rho\ell}{A}$$
$$V = IR$$

 ϕ_m = magnetic flux

$$V = IR$$

$$C_p = C_1 + C_2 + C_3 + \dots$$

$$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$$

$$R_s = R_1 + R_2 + R_3 + \dots$$

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

$$F_B = q v B \sin \theta$$

$$F_B = BI\ell \sin\theta$$

$$B = \frac{\mu_0}{2\pi} \frac{I}{r}$$

$$\phi_m = BA \cos \theta$$

$$\mathcal{E}_{avg} = -\frac{\Delta\phi_m}{\Delta t}$$

$$\varepsilon = B\ell v$$

ADVANCED PLACEMENT PHYSICS B EQUATIONS DEVELOPED FOR 2012

FLUID MECHANICS AND THERMAL PHYSICS

$$\rho = m/V$$

$$P = P_0 + \rho g h$$

$$F_{buov} = \rho V g$$

$$A_1v_1=A_2v_2$$

$$P + \rho g y + \frac{1}{2} \rho v^2 = \text{const.}$$

$$\Delta \ell = \alpha \ell_0 \Delta T$$

$$H = \frac{kA\Delta T}{L}$$

$$P = \frac{F}{A}$$

$$PV = nRT = Nk_BT$$

$$K_{avg} = \frac{3}{2}k_BT$$

$$v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3k_BT}{\mu}}$$

$$W = -P\Delta V$$

$$\Delta U = Q + W$$

$$e = \left| \frac{W}{Q_H} \right|$$

$$e_c = \frac{T_H - T_C}{T_H}$$

A = area

e = efficiency

F = force

h = depth

H = rate of heat transfer

k =thermal conductivity

 K_{avg} = average molecular

kinetic energy

 $\ell = length$

L =thickness

m = mass

M = molar mass

n = number of moles

N = number of molecules

P = pressure

Q = heat transferred to a system

T = temperature

U = internal energy

V = volume

v = velocity or speed

 v_{rms} = root-mean-square

velocity

W =work done on a system

y = height

 α = coefficient of linear

expansion

 μ = mass of molecule

 ρ = density

ATOMIC AND NUCLEAR PHYSICS

$$E = hf = pc$$

$$= pc$$

$$K_{\text{max}} = hf - \phi$$

$$\lambda = \frac{h}{p}$$

$$\Delta E = (\Delta m)c^2$$

E = energy

f = frequency

K = kinetic energy

m = mass

p = momentum

 λ = wavelength

 ϕ = work function

WAVES AND OPTICS

$$v = f\lambda$$

d = separation

$$n = \frac{c}{v}$$

= frequency or focal length

$$h = \text{height}$$

$$n_1\sin\theta_1=n_2\sin\theta_2$$

$$L = distance$$

$$\sin \theta_{\mathcal{C}} = \frac{n_2}{n_1}$$

$$M =$$
 magnification $m =$ an integer

$$n_{c} - n_{1}$$

$$n = index of$$

$$\frac{1}{s_i} + \frac{1}{s_0} = \frac{1}{f}$$

refraction
$$R = \text{radius of}$$

curvature

$$M = \frac{h_i}{h_0} = -\frac{s_i}{s_0}$$

$$s = \text{distance}$$

 $v = \text{speed}$

$$f = \frac{R}{2}$$

$$x = position$$

 $\lambda = wavelength$

$$d\sin\theta = m\lambda$$

$$\theta$$
 = angle

A = area

b = base

h = height

 $\ell = length$

w = width

r = radius

V = volume

C = circumference

S = surface area

$$x_m \approx \frac{m\lambda L}{d}$$

GEOMETRY AND TRIGONOMETRY

Rectangle

A = bh

Triangle

 $A = \frac{1}{2}bh$

Circle

 $A = \pi r^2$

 $C = 2\pi r$

Rectangular Solid

 $V = \ell w h$

Cylinder

$$V=\pi r^2\ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

$$V = \frac{4}{3}\pi r^3$$

$$S = 4\pi r^2$$

Right Triangle

$$a^2 + b^2 = c^2$$

$$\sin\theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$

$$\tan\theta = \frac{a}{b}$$

