AP[®] PHYSICS B 2009 SCORING GUIDELINES (Form B)

Question 3

15 points total

Distribution of points

1 point

(a) 3 points

1 point
1 point
1 point

(b) 5 points

For applying Bernoulli's equation to this situation 1 point $P_{A} + rgy_{A} + \frac{1}{2}ru_{A}^{2} = P_{B} + rgy_{B} + \frac{1}{2}ru_{B}^{2}$ $P_{A} = P_{B} + rg(y_{B} - y_{A}) + \frac{1}{2}r(u_{B}^{2} - u_{A}^{2})$ For using atmospheric pressure 1.0×10^{5} Pa) for the pressure at point B 1 point For correctly substituting values for y_{A} and y_{B} 1 point For correctly substituting values for u_{A} and u_{B} consistent with the work in part (a) 1 point $P_{A} = (1.0 \times 10^{5} \text{ Pa} + (1000 \text{ kg/m}^{3} (9.8 \text{ m/s}^{2}) 0.50 \text{ m} - 0)$ $+ \frac{1}{2}(1000 \text{ kg/m}^{3})([8.2 \text{ m/s}]^{2} - [4.1 \text{ m/s}]^{2})$

For correct units for the answer $P_A = 1.3 \times 10^5 \text{ N/m}^2 \text{ (or Pa)}$

(c) 2 points

For correctly relating the initial speed and the maximum height	1 point
$u^{2} = u_{0}^{2} + 2a(x - x_{0})$ OR $\frac{1}{2}mu^{2}$ mgh	
$u_B^2 = 2gh$	
$h = u_B^2/2g = (8.2 \text{ m/s})^2/2 9.8 \text{ m/s}^2)$	
For the correct answer with correct units	1 point
<i>h</i> 3.4 m	-

AP[®] PHYSICS B 2009 SCORING GUIDELINES (Form B)

Question 3 (continued)

Distribution of points

(d) 5 points

For correctly analyzing the vertical motion with constant acceleration, to find the time for the water to reach maximum height	1 point
$u = u_0 + at$	
$0 = u_{By} + gt$	
U_{By} gt	
For the correct vertical component of speed	1 point
$u_{By} = u_B \sin q$	
$t = U_{By}/g = U_B \sin q/g$	
For correctly analyzing the horizontal motion with constant speed	1 point
$x = u_{Bx} 2t)$	
For the correct horizontal component of speed	1 point
$u_{Bx} = u_B \cos q$	
$x = u_B \cos q (2u_B \sin q/g) = 2u_B^2 \cos q \sin q/g$	
$x = 2(8.2 \text{ m/s})^2 \cos 60^\circ \sin 60^\circ / 9.8 \text{ m/s}^2)$	
For the correct answer with units	1 point
x 5.9 m (or 5.8 m using $g - 10 \text{ m/s}^2$)	